skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jimenez, Jose‐Luis"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. The GoAmazon 2014/5 field campaign took place in Manaus, Brazil, and allowed the investigation of the interaction between background-level biogenic air masses and anthropogenic plumes.We present in this work a box model built to simulate the impact of urban chemistry on biogenic secondary organic aerosol (SOA) formation and composition.An organic chemistry mechanism is generated with the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to simulate the explicit oxidation of biogenic and anthropogenic compounds.A parameterization is also included to account for the reactive uptake of isoprene oxidation products on aqueous particles.The biogenic emissions estimated from existing emission inventories had to be reduced to match measurements.The model is able to reproduce ozone and NOx for clean and polluted situations.The explicit model is able to reproduce background case SOA mass concentrations but does not capture the enhancement observed in the urban plume.The oxidation of biogenic compounds is the major contributor to SOA mass.A volatility basis set (VBS) parameterization applied to the same cases obtains better results than GECKO-A for predicting SOA mass in the box model.The explicit mechanism may be missing SOA-formation processes related to the oxidation of monoterpenes that could be implicitly accounted for in the VBS parameterization. 
    more » « less
  2. Abstract Aerosol mass extinction efficiency (MEE) is a key aerosol property used to connect aerosol optical properties with aerosol mass concentrations. Using measurements of smoke obtained during the Fire Influence on Regional to Global Environments and Air Quality (FIREX‐AQ) campaign we find that mid‐visible smoke MEE can change by a factor of 2–3 between fresh smoke (<2 hr old) and one‐day‐old smoke. While increases in aerosol size partially explain this trend, changes in the real part of the aerosol refractive index (real(n)) are necessary to provide closure assuming Mie theory. Real(n) estimates derived from multiple days of FIREX‐AQ measurements increase with age (from 1.40 – 1.45 to 1.5–1.54 from fresh to one‐day‐old) and are found to be positively correlated with organic aerosol oxidation state and aerosol size, and negatively correlated with smoke volatility. Future laboratory, field, and modeling studies should focus on better understanding and parameterizing these relationships to fully represent smoke aging. 
    more » « less